Scientific paper

Synthesis and Biological Evaluation of some new Imidazo[1,2-*a*]pyridines

Zafer Cesur,^{1,*} Nesrin Cesur,¹ Seher Birteksöz² and Gülten Ötük²

¹ University of Istanbul, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116 Istanbul, TURKEY

² University of Istanbul, Faculty of Pharmacy, Department Pharmaceutical Microbiology, 34116 Istanbul, TURKEY

* Corresponding author: E-mail: cesurzfr@istanbul.edu.tr Fax:+90-2124400265

Received: 11-09-2009

Abstract

A series of new 1-[(2,8-dimethylimidazo[1,2-*a*]pyridine-3-yl)carbonyl]-4-alkyl/arylthiosemicarbazides, 2-[(2,8-dimethylimidazo[1,2-*a*]pyridine-3-yl)carbonyl]hydrazono-3-alkyl thiazolidin-4-ones, 2-(2,8-dimethylimidazo[1,2-*a*]pyridine-3-yl)-5-arylamino-1,3,4-oxadiazoles and 4-alkyl/aryl-2,4-dihydro-5-(2,8-dimethylimidazo[1,2-*a*]pyridine-3-yl)-3*H*-1,2,4-triazole-3-thiones were synthesized. The structures of the compounds have been elucidated by IR, ¹H NMR, EI mass spectra and elemental analysis. Antibacterial, antifungal and antimycobacterial activities of compounds were evaluated against various microorganisms and some of them were found to be active in varying degrees against *Staphylococcus epidermidis* or *Mycobacterium tuberculosis* $H_{27}R_{2}$.

Keywords: Imidazo[1,2-*a*]pyridine, 4-thiazolidinone, 1,3,4-oxadiazole, 1,2,4-triazole-3-thione, antimicrobial activity

1. Introduction

Imidazo[1,2-*a*]pyridines have been shown to possess diverse biological activities including antibacterial, antifungal, antituberculous, antiviral, anticonvulsant, antiinflammatory, analgesic and antipyretic.¹⁻⁶ Also many reports indicate that acyl thiosemicarbazides and their corresponding cyclized derivatives, such as 4-thiazolidinones, 1,3,4-oxadiazoles and 1,2,4-triazole-3-thiones, possess antibacterial, antifungal, antiviral, anticonvulsant, antiinflammatory and hypnotic activities.^{7–15}

As a continuation of our programme on imidazo[1,2-*a*]pyridine ring system,^{2-4,8,16,17} we synthesized some new acylthiosemicarbazides, 4-thiazolidinones, 1,3,4oxadiazoles and 1,2,4-triazole-3-thiones incorporating an imidazo[1,2-*a*]pyridine substituent to screen their antimicrobial activity.

2. Experimental

2.1. Chemistry

Melting points were determined on a Büchi 530 apparatus in open capillary tubes and are uncorrected. IR spectra were recorded on KBr discs, using a Perkin Elmer 1600 FT-IR spectrophotometer. ¹H NMR spectra were obtained in DMSO- d_6 on a Bruker AC 200 (200 MHz) spectrophotometer using TMS as the internal standard. EI-MS were performed on a VG Zab Spec (70 eV) instrument. Elemental analyses were performed on a Carlo Erba 1106 elemental analyzer. Compounds **2a**, **5a** and the starting materials were either commercially available or synthesized according to the references cited.

2. 1. 1. 1-[(2,8-Dimethylimidazo[1,2-*a*]pyridine-3yl)carbonyl]-4-alkyl/arylthiosemicarbazide (2a–j)

0.01 mol of 2,8-dimethylimidazo[1,2-*a*]pyridine-3carbohydrazide 1,¹⁸ 0.01 mol of appropriate isothiocyanate and absolute ethanol (15 mL) were refluxed for 3 h. The separated solid was filtered and recrystallized from ethanol (96%).

2-[(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)carbonyl]-***N***-methylhydrazinecarbothioamide (2a): Yield: 91%, mp 225–228 °C. IR ν (cm⁻¹): 3316, 3170 (N–H), 1652 (C=O), 1226 (C=S). ¹H NMR δ ppm: 9.57 (s, 1H, N¹-H),**

Cesur et al.: Synthesis and biological evaluation of some new ...

9.32 (s, 1H, N²-H), 8.85 (d, J = 6.9 Hz, 1H, C₅-H), 8.04 (br s, 1H, N⁴-H), 7.23 (d, J = 6.8 Hz, 1H, C₇-H), 6.95 (t, J = 6.8 Hz, 1H, C₆-H), 2.90 (d, 3H, N-CH₃), 2.63 (s, 3H, C₈-CH₃), 2.49 (s, 3H, C₂-CH₃). EI-MS *m/z* (rel. intensity): 277 (M⁺, 43), 247 (4), 246 (13), 244 (24), 243 (72), 204 (1), 189 (27), 186 (39), 174 (22), 173 (100), 171 (19), 158 (23), 157 (13), 146 (19), 118 (29), 92 (18), 73 (4), 65 (20). Anal. Calcd for C₁₂H₁₅N₅OS × 2 H₂O: C, 45.99; H, 6.11; N, 22.33. Found: C, 46.37; H, 5.87; N, 21.93.

2-[(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)carbonyl]-***N***-ethylhydrazinecarbothioamide (2b): Yield: 90%, mp 205–207 °C. IR v (cm⁻¹): 3334, 3173 (N–H), 1636 (C=O), 1225 (C=S). ¹H NMR \delta ppm: 9.58 (s, 1H, N¹-H), 9.26 (s, 1H, N²-H), 8.83 (d,** *J* **= 6.9 Hz, 1H, C₅-H), 8.07 (br s, 1H, N⁴-H), 7.23 (d,** *J* **= 6.7 Hz, 1H, C₇-H), 6.95 (t,** *J* **= 7.6 Hz, 1H, C₆-H), 3.42–3.55 (m, 2H, ethyl CH₂), 2.64 (s, 3H, C₈-CH₃), 2.49 (s, 3H, C₂-CH₃), 1.08 (t,** *J* **= 7.1 Hz, 3H, ethyl CH₃). EI-MS** *m/z* **(rel. intensity): 291 (M⁺, 43), 258 (24), 257 (72), 247 (3), 246 (15), 204 (23), 189 (26), 186 (45), 174 (31), 173 (100), 158 (24), 146 (26), 118 (31), 104 (18), 87 (16), 65 (23). Anal. Calcd for C₁₃H₁₇N₅OS: C, 53.59; H, 5.88; N, 24.04. Found: C, 54.11; H, 6.28; N, 24.35.**

N-Allyl-2-[(2,8-dimethylimidazo[1,2-*a*]pyridin-3yl)carbonyl]hydrazinecarbothioamide (2c): Yield: 76%, mp 203–205 °C. IR v (cm⁻¹): 3310, 3206 (N–H), 1645 (C=O), 1218 (C=S). ¹H NMR δ ppm: 9.56 (s, 1H, N¹-H), 9.23 (s, 1H, N²-H), 8.80 (d, *J* = 6.8 Hz, 1H, C₅-H), 8.01 (br s, 1H, N⁴-H), 7.28 (d, *J* = 6.8 Hz, 1H, C₇-H), 6.95 (t, *J* = 7.6 Hz, 1H, C₆-H), 5.90–5.85 (m, 1H, CH₂-CH=CH₂), 5.12 (d, *J* = 16.1 Hz, 1H, *trans* CH₂-CH=CH₂), 5.17 (d, *J* = 10.3 Hz, 1H, *cis* CH₂-CH=CH₂), 4.16 (s, 2H, CH₂-CH=CH₂), 2.68 (s, 3H, C₈-CH₃), 2.46 (s, 3H, C₂-CH₃). Anal. Calcd for C₁₄H₁₇N₅OS × 2 H₂O: C, 49.54; H, 6.23; N, 20.62. Found: C, 50.06; H, 6.27; N, 19.68.

2-[(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)carbonyl]-N-propylhydrazinecarbothioamide (2d)**: Yield: 82%, mp 203–205 °C. IR v (cm⁻¹): 3330, 3166 (N–H), 1637 (C=O), 1223 (C=S). ¹H NMR δ ppm: 9.58 (s, 1H, N¹-H), 9.25 (s, 1H, N²-H), 8.82 (d, *J* = 6.8 Hz, 1H, C₅-H), 8.03 (br s, 1H, N⁴-H), 7.26 (d, *J* = 6.8 Hz, 1H, C₇-H), 6.95 (t, *J* = 6.8 Hz, 1H, C₆-H), 3.72–3.68 (m, 2H, N-CH₂), 2.60 (s, 3H, C₈-CH₃), 2.48 (s, 3H, C₂-CH₃), 1.51–1.30 (m, 2H, CH₂CH₂CH₃), 0.60 (t, *J* = 7.3 Hz, 3H, CH₂CH₂CH₂). Anal. Calcd for C₁₄H₁₉N₅OS × 0.5 H₂O: C, 53.48; H, 6.41; N, 22.26. Found: C, 53.60; H, 6.48; N, 22.28.

N-Butyl-2-[(2,8-dimethylimidazo[1,2-*a*]pyridin-3yl)carbonyl]hydrazinecarbothioamide (2e): Yield: 90%, mp 185 °C. IR v (cm⁻¹): 3313, 3158 (N–H), 1637 (C=O), 1219 (C=S). ¹H NMR δ ppm: 9.60 (s, 1H, N¹-H), 9.30 (s, 1H, N²-H), 8.83 (d, *J* = 6.8 Hz, 1H, C₅-H), 8.00 (br s, 1H, N⁴-H), 7.25 (d, J = 6.8 Hz, 1H, C₇-H), 6.96 (t, J = 6.8 Hz, 1H, C₆-H), 3.43–3.32 (m, 2H, N-CH₂), 2.64 (s, 3H, C₈-CH₃), 2.46 (s, 3H, C₂-CH₃), 1.47–1.40 (m, 2H, CH₂CH₂CH₂CH₂CH₃), 1.30–1.25 (m, 2H, CH₂CH₂CH₂CH₂), 0.86 (t, J = 7.3 Hz, 3H, CH₂CH₂CH₂CH₂CH₃). Anal. Calcd for C₁₅H₂₁N₅OS: C, 56.40; H, 6.63; N, 21.92. Found: C, 55.90; H, 6.97; N, 21.85.

2-[(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)carbonyl]-N-phenylhydrazinecarbothioamide (2f): Yield: 96%, mp >268 °C. IR v (cm⁻¹): 3378, 3218 (N–H), 1627 (C=O), 1236 (C=S). ¹H NMR \delta ppm: 9.78 (broad s, 3H, N¹-H, N²-H, N⁴-H), 8.90 (d,** *J* **= 6.6 Hz, 1H, C₅-H), 7.50 (d,** *J* **= 7.9 Hz, 1H, C₇-H), 7.11–7.37 (m, 5H, C₆H₅), 6.95 (t,** *J* **= 7.0 Hz, 1H, C₆-H), 2.69 (s, 3H, C₈-CH₃), 2.50 (s, 3H, C₂-CH₃). EI-MS** *m***/***z* **(rel. intensity): 277 (43), 247 (4), 246 (13), 244 (24), 243 (72), 204 (1), 189 (27), 186 (39), 174 (22), 173 (100), 171 (19), 158 (23), 157 (13), 146 (19), 118 (29), 92 (18), 73 (4), 65 (20). Anal. Calcd for C₁₇H₁₇N₅OS × H₂O: C, 57.12; H, 5.35; N, 19.58. Found: C, 57.23; H, 5.76; N, 19.91.**

2-[(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)carbonyl]-N-(4-methylphenyl)hydrazinecarbothioamide (2g):** Yield: 95%, mp 245 °C. IR v (cm⁻¹): 3333, 3191 (N–H), 1639 (C=O), 1259 (C=S). ¹H NMR δ ppm: 9.71 (br s, 3H, N¹-H, N²-H, N⁴-H), 8.87 (d, *J* = 6.8 Hz, 1H, C₅-H), 7.35 (d, *J* = 7.9 Hz, 2H, tolyl C₂-H, C₆-H), 7.23 (d, *J* = 6.9 Hz, 1H, C₇-H), 7.13 (d, *J* = 8.2 Hz, 2H, tolyl C₃-H, C₅-H), 6.95 (t, *J* = 6.9 Hz, 1H, C₆-H), 2.67 (s, 3H, C₈-CH₃), 2.50 (s, 3H, C₂-CH₃), 2.28 (s, 3H, tolyl CH₃). EI-MS *m/z* (rel. intensity): 353 (M⁺, 3), 295 (3), 247 (8), 246 (10), 205 (64), 204 (78), 189 (2), 173 (100), 147 (17), 145 (7), 117 (10), 91 (8), 65 (8). Anal. Cald for C₁₈H₁₉N₅OS × 1.5 H₂O: C, 56.82; H, 5.83; N, 18.39. Found: C, 56.82; H, 5.56; N, 18.40.

N-(**4**-Bromophenyl)-2-[(2,8-dimethylimidazo[1,2*a*]pyridin-3-yl)carbonyl]hydrazinecarbothioamide (2h): Yield: 89%, mp 235 °C. IR v (cm⁻¹): 3356, 3311 (N–H), 1635 (C=O), 1216 (C=S). ¹H NMR δ ppm: 9.80 (broad s, 3H, N¹-H, N²-H, N⁴-H), 8.82 (d, *J* = 6.8 Hz,1H, C₅-H), 7.60 (d, *J* = 8.1 Hz, 2H, phenyl C₂-H, C₆-H), 7.38 (d, *J* = 8.1 Hz, 2H, phenyl C₃-H, C₅-H), 7.23 (d, *J* = 6.9 Hz, 1H, C₇-H), 6.94 (t, *J* = 6.8 Hz, 1H, C₆-H), 2.65 (s, 3H, C₈-CH₃), 2.49 (s, 3H, C₂-CH₃). Anal. Calcd for C₁₇H₁₆BrN₅OS: C, 48.81; H, 3.86; N, 16.74. Found: C, 48.97; H, 2.91; N, 16.95.

N-(4-Chlorophenyl)-2-[(2,8-dimethylimidazo[1,2*a*]pyridin-3-yl)carbonyl]hydrazinecarbothioamide (2i): Yield: 92%, mp >268 °C. IR v (cm⁻¹): 3359, 3136 (N–H), 1635 (C=O), 1254 (C=S). ¹H NMR δ ppm: 9.84 (br s, 3H, N¹-H, N²-H, N⁴-H), 8.86 (d, *J* = 6.7 Hz, 1H, C₅-H), 7.53 (d, *J* = 8.5 Hz, 2H, phenyl C₂-H, C₆-H), 7.38 (d, *J* = 8.7 Hz, 2H, phenyl C₃-H, C₅-H), 7.25 (d, *J* = 6.9 Hz, 1H, C₇-H), 6.96 (t, J = 6.9 Hz, 1H, C₆-H), 2.66 (s, 3H, C₈-CH₃), 2.50 (s, 3H, C₂-CH₃). EI-MS m/z (rel. intensity): 373 (M⁺, 2), 339 (3), 247 (1), 246 (3), 204 (25), 189 (2), 174 (15), 173 (100), 169 (39), 149 (9), 145 (8), 127 (4), 118 (6), 111 (12), 104 (11), 78 (9), 65 (9). Anal. Calcd for C₁₇H₁₆ClN₅OS × H₂O: C, 52.10; H, 4.62; N, 17.86. Found: C, 51.36; H, 3.89; N, 17.75.

2-[(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)carbonyl]-N-(4-fluorophenyl)hydrazinecarbothioamide (2j):** Yield: 54 %, mp 255 °C. IR v (cm⁻¹): 3260 (N–H), 1668(C=O), 1209 (C=S). ¹H NMR δ ppm: 9.77 (broad s, 3H, N¹-H, N²-H, N⁴-H), 8.87 (d, *J* = 6.8 Hz, 1H, C₅-H), 7.40–7.33 (m, 3H, phenyl C₂-H, C₆-H, C₇-H), 7.17–7.10 (m, 2H, phenyl C₃-H, C₅-H), 6.95 (t, *J* = 6.9 Hz, 1H, C₆-H), 2.65 (s, 3H, C₈-CH₃), 2.49 (s, 3H, C₂-CH₃). Anal. Calcd for C₁₇H₁₆FN₅OS × 0.5 H₂O: C, 55.72; H, 4.67; N, 19.10. Found: C, 55.58; H, 4.57; N, 19.23.

2. 1. 2. 2-[(2,8-Dimethylimidazo[1,2-*a*]pyridine-3-yl)carbonyl]hydrazono-3-alkylthiazolidin-4-one (3a–e)

0.01 mol of the appropriate thiosemicarbazide **2a–e** and 0.011 mol of ethyl bromoacetate were refluxed in 30 mL of absolute ethanole in the presence of 0.04 mol of anhydrous CH₃COONa for 2–4 h. The reaction mixture was cooled, diluted with water and allowed to stand overnight. The precipitate thus obtained was filtered, dried and recrystallized from ethanol (96%).

2,8-Dimethyl-*N***'**-(**3-methyl-4-oxo-1,3-thiazolidin-2-ylidene)imidazo[1,2-***a***]pyridine-3-carbohydrazide** (**3a**): Yield: 78%, mp 258–259 °C IR v (cm⁻¹): 3321, 3138 (N–H), 1711 (C=O, thiazolidinone), 1666 (C=O, hydrazide). ¹H NMR δ ppm: 10.28 (s, 1H, CONH), 8.81 (d, *J* = 6.4 Hz, 1H, C₅-H), 7.21 (d, *J* = 6.3 Hz, 1H, C₇-H), 6.94 (t, *J* = 6.8 Hz, 1H, C₆-H), 4.06 (s, 2H, S-CH₂), 3.17 (s, 3H, N-CH₃), 2.63 (s, 3H, C₈-CH₃), 2.50 (s, 3H, C₂-CH₃). EI-MS *m*/*z* (rel. intensity): 317 (M⁺, 100), 71 (2), 45 (8), 42 (16). Anal. Calcd for C₁₄H₁₅N₅O₂S: C, 52.98; H, 4.76; N, 22.07. Found: C, 52.70; H, 5.00; N, 22.05.

N'-(**3-Ethyl-4-oxo-1,3-thiazolidin-2-ylidene)-2,8-dimethylimidazo[1,2-***a***]pyridine-3-carbohydrazide (3b): Yield: 88%, mp 203–205 °C IR ν (cm⁻¹): 3470 (N–H), 1698 (C=O, thiazolidinone), 1651 (C=O, hydrazide). ¹H NMR δ ppm: 10.17 (s, 1H, CONH), 8.28 (d, J = 6.8 Hz, 1H, C₅-H), 7.08 (d, J = 6.9 Hz, 1H, C₇-H), 6.81 (t, J = 6.9 Hz, 1H, C₆-H), 3.93 (s, 2H, S-CH₂), 3.63 (s, 2H, N-CH₂), 2.50 (s, 3H, C₈-CH₃), 2.36 (s, 3H, C₂-CH₃), 1.06 (t, J = 7.1 Hz, 3H, ethyl CH₃). EI-MS** *m/z* **(rel. intensity): 331 (M⁺, 76), 257 (17), 189 (5), 186 (19), 174 (52), 173 (100), 146 (65), 118 (19), 104 (23), 92 (21), 65 (19). Anal. Calcd for C₁₅H₁₇N₅O₂S × 3 H₂O: C, 46.73; H, 6.01; N, 18.16. Found: C, 47.41; H, 5.42; N, 18.05.** *N*'-(3-Allyl-4-oxo-1,3-thiazolidin-2-ylidene)-2,8-dimethylimidazo[1,2-*a*]pyridine-3-carbohydrazide (3c): Yield: 56%, mp 198–200 °C. IR v (cm⁻¹): 3448, 3127 (N–H), 1718 (C=O, thiazolidinone), 1644 (C=O, hydrazide). ¹H NMR δ ppm: 10.21 (s, 1H, CONH), 8.60 (d, *J* = 6.8 Hz, 1H, C₅-H), 7.18 (d, *J* = 6.8 Hz, 1H, C₇-H), 6.81 (t, *J* = 6.8 Hz, 1H, C₆-H), 5.87–5.82 (m, 1H, CH₂-CH=CH₂), 5.23 (d, *J* = 16.1 Hz, 1H, *trans* CH₂-CH=CH₂), 5.16 (d, *J* = 10.3 Hz, 1H, *cis* CH₂-CH=CH₂), 4.40 (d, 2H, CH₂-CH=CH₂), 3.90 (s, 2H, S-CH₂), 2.48 (s, 3H, C₈-CH₃), 2.30 (s, 3H, C₂-CH₃). Anal.Calcd for C₁₆H₁₇N₅O₂S × H₂O: C, 53.16; H, 5.29; N, 19.37. Found: C, 52.75; H, 5.58; N, 19.22.

2,8-Dimethyl-*N***'**-(**4-oxo-3-propyl-1,3-thiazolidin-2-ylidene)imidazo**[**1,2-***a*]**pyridine-3-carbohydrazide** (**3d**): Yield: 83%, mp 201–202 °C. IR v (cm⁻¹): 3466, 3258 (N–H), 1704 (C=O, thiazolidinone), 1659 (C=O, hydrazide). ¹H NMR δ ppm: 10.25 (s, 1H, CONH), 8.32 (d, *J* = 6.8 Hz, 1H, C₅-H), 7.16 (d, *J* = 6.9 Hz, 1H, C₇-H), 6.82 (t, *J* = 6.8 Hz, 1H, C₆-H), 4.04 (s, 2H, S-CH₂), 3.74 (t, *J* = 7.2 Hz, 2H, N-CH₂), 2.49 (s, 3H, C₈-CH₃), 2.36 (s, 3H, C₂-CH₃), 1.49–1.31 (m, 2H, CH₂CH₂CH₃), 0.58 (t, *J* = 7.4 Hz, 3H, CH₂CH₂CH₃). Anal. Calcd for C₁₆H₁₉N₅O₂S × 3 H₂O: C, 48.10; H, 6.30; N, 17.52. Found: C, 48.33; H, 6.39; N, 17.38.

N'-(**3-Butyl-4-oxo-1,3-thiazolidin-2-ylidene)-2,8-dimethylimidazo[1,2-***a***]pyridine-3-carbohydrazide (3e): Yield: 85%, mp 175–176 °C. IR ν (cm⁻¹): 3133 (N–H), 1717 (C=O, thiazolidinone), 1676 (C=O, hydrazide). ¹H NMR δ ppm: 10.19 (s, 1H, CONH), 8.26 (d, J = 6.9 Hz, 1H, C₅-H), 7.12 (d, J = 6.9 Hz, 1H, C₇-H), 6.81 (t, J = 6.9 Hz, 1H, C₆-H), 4.03 (s, 2H, S-CH₂), 3.72 (t, J = 7.2 Hz, 2H, N-CH₂), 2.52 (s, 3H, C₈-CH₃), 2.34 (s, 3H, C₂-CH₃), 1.73–1.56 (m, 2H, CH₂CH₂CH₂CH₃), 1.42–1.28 (m, 2H, CH₂CH₂CH₂CH₃), 0.90 (t, J = 7.2 Hz, 3H, CH₂CH₂CH₂CH₃). Anal. Calcd for C₁₇H₂₁N₅O₂S: C, 56.80; H, 5.89; N, 19.48. Found: C, 56.97; H, 5.23; N, 19.22.**

2. 1. 3. 2-(2,8-Dimethylimidazo[1,2-a]pyridine-3yl)-5-arylamino-1,3,4-oxadiazole (4a–d)

4a–d were obtained from **2f**,**g**,**i**,**j** as described for **3a–e**. **5-(2,8-Dimethylimidazo[1,2-***a***]pyridin-3-yl)-***N***-phenyl-1,3,4-oxadiazol-2-amine (4a)**: Yield: 85%, mp 265–266°C. IR v (cm⁻¹): 3150–2866 (N–H). ¹H NMR δ ppm: 10.78 (s, 1H, NH), 9.09 (d, *J* = 6.0 Hz, 1H, C₅-H), 7.64 (d, *J* = 6.0 Hz, 1H, C₇-H), 7.40–7.09 (m, 5H, C₆H₅), 7.03 (t, *J* = 7.3 Hz, 1H, C₆-H), 2.69 (s, 3H, C₈-CH₃), 2.55 (s, 3H, C₂-CH₃). EI-MS *m*/*z* (rel. intensity): 305 (M⁺, 23), 187 (5), 186 (11), 173 (100), 170 (34), 158 (9), 156 (23), 146 (2), 145 (5), 133 (3). Anal. Calcd for C₁₇H₁₅N₅O: C, 66.86; H, 4.95; N, 22.93. Found: C, 66.73; H, 4.92; N, 22.47. **5-(2,8-Dimethylimidazo[1,2-***a***]pyridin-3-yl)-***N***-(4methylphenyl)-1,3,4-oxadiazol-2-amine (4b): Yield: 67%, mp 268–269 °C. IR v (cm⁻¹): 3200–2912 (N–H). ¹H NMR \delta ppm: 10.35 (s, 1H, NH), 8.94 (d,** *J* **= 6.7 Hz, 1H, C₅-H), 7.38 (d,** *J* **= 8.1 Hz, 2H, phenyl C₂-H, C₆-H), 7.16 (d,** *J* **= 6.7 Hz, 1H, C₇-H), 7.04 (d,** *J* **= 8.0 Hz, 2H, phenyl C₃-H, C₅-H), 6.97 (t,** *J* **= 6.8 Hz, 1H, C₆-H), 2.55 (3H, s, C₈-CH₃), 2.41 (s, 3H, C₂-CH₃), 2.14 (s, 3H, phenyl CH₃). EI-MS** *m/z* **(rel. intensity): 319 (M⁺, 100), 262 (11), 187 (8), 186 (45), 174 (3), 173 (26), 172 (14), 171 (64), 158 (23), 146 (3), 145 (3), 133 (2). Anal. Calcd for C₁₈H₁₇N₅O: C, 67.69; H, 5.36; N, 21.93. Found: C, 66.78; H, 5.97; N, 21.72.**

N-(4-Chlorophenyl)-5-(2,8-dimethylimidazo[1,2*a*]pyridin-3-yl)-1,3,4-oxadiazol-2-amine (4c): Yield: 97%, mp 268 °C. IR v (cm⁻¹): 3150–2925 (N–H). ¹H NMR δ ppm: 10.36 (s, 1H, NH), 8.90 (d, *J* = 6.8 Hz, 1H, C₅-H), 7.56 (d, *J* = 8.5 Hz, 2H, phenyl C₂-H, C₆-H), 7.32 (d, *J* = 8.6 Hz, 2H, phenyl C₃-H, C₅-H), 7.16 (d, *J* = 6.8 Hz, 1H, C₇-H), 6.89 (t, *J* = 6.8 Hz, 1H, C₆-H), 2.50 (3H, s, C₈-CH₃), 2.39 (s, 3H, C₂-CH₃). Anal. Calcd for C₁₇H₁₄Cl-N₅O: C, 60.09; H, 4.15; N, 20.61. Found: C, 59.39; H, 3.98; N, 19.94.

5-(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-***N***-(4-fluorophenyl)-1,3,4-oxadiazol-2-amine** (**4d**): Yield: 80%, mp 265–268 °C. IR ν (cm⁻¹): 3178–2951 (N–H). ¹H NMR δ ppm: 10.65 (s, 1H, NH), 8.90 (d, J = 6.7 Hz, 1H, C₅-H), 7.55–7.51 (m, 2H, phenyl C₂-H, C₆-H), 7.21–7.17 (m, 3H, phenyl C₃-H, C₅-H, C₇-H), 6.96 (t, J = 6.8 Hz, 1H, C₆-H), 2.60 (3H, s, C₈-CH₃), 2.45 (s, 3H, C₂-CH₃). Anal. Calcd for C₁₇H₁₄FN₅O × 0.5 H₂O: C, 61.43; H, 4.54; N, 21.07. Found: C, 62.10; H, 4.09; N, 21.09.

2. 1. 4. 4-Alkyl/aryl-2,4-dihydro-5-(2,8-dimethylimidazo[1,2-*a*]pyridine-3-yl)-3*H*-1,2,4-triazole -3-thiones (5a–h)

A mixture of the thiosemicarbazide 2a-j (0.01 mol) and 2N NaOH (30 mL) was heated to reflux. After 3 h the mixture was poored into crushed ice and acidified with dilute HCl to pH 6–8. The precipitate was filtered, washed with water and recrystallized from ethanol (96%).

5-(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-4-methyl-2,4-dihydro-3***H***-1,2,4-triazole-3-thione (5a): Yield: 72%, mp >268 °C. IR v (cm⁻¹): 3088 (N–H), 1632 (C=N), 1285 (C=S). ¹H NMR \delta ppm: 14.10 (s, 1H, NH), 8.19 (d, J = 6.7 Hz, 1H, C₅-H), 7.20 (d, J = 6.7 Hz, 1H, C₇-H), 6.88 (t, J = 6.9 Hz, 1H, C₆-H), 3.27 (N-CH₃ with H₂O), 2.51 (s, 3H, C₈-CH₃), 2.35 (s, 3H, C₂-CH₃). EI-MS** *m/z* **(rel. intensity): 259 (M⁺, 56), 258 (45), 245 (71), 186 (22), 172 (20), 171 (56), 155 (8), 91 (15), 59 (68), 41 (100). Anal. Calcd for C₁₂H₁₃N₅S × 0.5 H₂O: C, 53.71; H, 5.25; N, 26.08. Found: C, 54.33; H, 5.13; N, 26.23.** **5-(2,8-Dimethylimidazo**[1,2-*a*]**pyridin-3-yl**)-**4-ethyl-2,4-dihydro-3***H***-1,2,4-triazole-3-thione** (**5b**): Yield: 88%, mp >268 °C. IR v (cm⁻¹): 3080, 3026 (N–H), 1630 (C=N), 1277 (C=S). ¹H NMR δ ppm: 14.12 (s, 1H, NH), 8.12 (d, *J* = 6.7 Hz, 1H, C₅-H), 7.20 (d, *J* = 6.7 Hz, 1H, C₇-H), 6.86 (t, *J* = 6.8 Hz, 1H, C₆-H), 3.80 (q, 2H, N-CH₂), 2.52 (s, 3H, C₈-CH₃), 2.33 (s, 3H, C₂-CH₃), 1.00 (t, 3H, ethyl CH₃). Anal. Calcd for C₁₃H₁₅N₅S: C, 57.12; H, 5.53; N, 25.62. Found: C, 56.32; H, 5.87; N, 25.91.

4-Allyl-5-(2,8-dimethylimidazo[1,2-*a***]pyridin-3-yl)-2,4-dihydro-3***H***-1,2,4-triazole-3-thione (5c): Yield: 78%, mp >268 °C. IR v (cm⁻¹): 3080 (N–H), 1631 (C=N), 1281 (C=S). ¹H NMR \delta ppm: 14.12 (s, 1H, NH), 8.15 (d,** *J* **= 6.7 Hz, 1H, C₅-H), 7.20 (d,** *J* **= 6.7 Hz, 1H, C₇-H), 6.87 (t,** *J* **= 6.9 Hz, 1H, C₆-H), 5.85–5.80 (m, 1H, CH₂-CH=CH₂), 5.24 (d,** *J* **= 16.2 Hz, 1H,** *trans* **CH₂-CH=CH₂), 5.16 (d,** *J* **= 10.2 Hz, 1H,** *cis* **CH₂-CH=CH₂), 4.20 (d,** *J* **= 4.9 Hz, 2H, CH₂-CH=CH₂), 2.50 (s, 3H, C₈-CH₃), 2.33 (s, 3H, C₂-CH₃). Anal. Calcd for C₁₄H₁₅N₅S × 0.5 H₂O: C, 57.12; H, 5.47; N, 23.77. Found: C, 57.83; H, 5.48; N, 24.11.**

5-(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-4-propyl-2,4-dihydro-3***H***-1,2,4-triazole-3-thione (5d): Yield: 94%, mp >268 °C. IR v (cm⁻¹): 3083, 3026 (N–H), 1629 (C=N), 1278 (C=S). ¹H NMR \delta ppm: 14.13 (s, 1H, NH), 8.12 (d,** *J* **= 6.7 Hz, 1H, C₅-H), 7.20 (d,** *J* **= 7.6 Hz, 1H, C₇-H), 6.87 (t,** *J* **= 6.8 Hz, 1H, C₆-H), 3.74 (t,** *J* **= 7.1 Hz, 2H, N-CH₂), 2.52 (s, 3H, C₈-CH₃), 2.33 (s, 3H, C₂-CH₃), 1.37–1.52 (m, 2H, CH₂CH₂CH₃), 0.56 (t,** *J* **= 7.4 Hz, 3H, CH₂CH₂CH₃). Anal. Calcd for C₁₄H₁₇N₅S × 0.5 H₂O: C, 56.73; H, 6.12; N, 23.61. Found: C, 57.19; H, 5.98; N, 23.24.**

5-(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-4-phenyl-2,4-dihydro-3***H***-1,2,4-triazole-3-thione (5e): Yield: 85%, mp >268 °C. IR v (cm⁻¹): 3420, 3066 (N–H), 1629 (C=N), 1275 (C=S). ¹H NMR \delta ppm: 14.30 (s, 1H, NH), 8.26 (d,** *J* **= 6.8 Hz,1H, C₅-H), 7.34 (s, 5H, C₆H₅), 7.09 (d,** *J* **= 6.8 Hz, 1H, C₇-H), 6.76 (t,** *J* **= 6.8 Hz, 1H, C₆-H), 2.42 (s, 3H, C₈-CH₃), 2.01 (s, 3H, C₂-CH₃). EI-MS** *m***/***z* **(rel. intensity): 321 (M⁺, 100), 262 (8), 248 (2), 244 (3),186 (4), 171 (24), 150 (2), 73 (6). Anal. Calcd for C₁₇H₁₅N₅S: C, 63.53; H, 4.70; N, 21.79. Found: C, 63.72; H, 4.65; N, 21.41.**

5-(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-4-(4methylphenyl)-2,4-dihydro-3***H***-1,2,4-triazole-3-thione (5f**): Yield: 48%, mp >268 °C. IR v (cm⁻¹): 3390, 3065 (N–H), 1628 (C=N), 1273 (C=S). ¹H NMR δ ppm: 14.26 (s, 1H, NH), 8.25 (d, *J* = 6.7 Hz, 1H, C₅-H), 7.12–7.22 (m, 4H, C₆H₄), 7.09 (d, *J* = 7.2 Hz, 1H, C₇-H), 6.77 (d, *J* = 6.8 Hz, 1H, C₆-H), 2.42 (s, 3H, C₈-CH₃), 2.26 (s, 3H, C₂-CH₃), 2.02 (s, 3H, phenyl CH₃). EI-MS *m/z* (rel. intensity): 335 (M⁺, 83), 334 (100), 276 (4), 262 (23), 244 (3), 186 (2), 171 (18), 164 (3), 91 (73), 65 (91). Anal. Calcd for C₁₈H₁₇N₅S × H₂O: C, 61.16; H, 5.41; N, 19.80. Found: C, 61.99; H, 5.27; N, 20.00.

4-(4-Bromophenyl)-5-(2,8-dimethylimidazo[1,2*a*]**pyridin-3-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione** (**5g**): Yield: 40%, mp >268 °C. IR v (cm⁻¹): 3416, 3068 (N–H), 1628 (C=N), 1272 (C=S). ¹H NMR δ ppm: 14.16 (s, 1H, NH), 8.20 (d, *J* = 6.7 Hz, 1H, C₅-H), 7.52 (d, *J* = 8.0 Hz, 2H, phenyl C₂-H, C₆-H), 7.46 (d, *J* = 8.0 Hz, 2H, phenyl C₂-H, C₆-H), 7.46 (d, *J* = 8.0 Hz, 2H, phenyl C₃-H, C₅-H), 7.09 (d, *J* = 7.2 Hz, 1H, C₇-H), 6.77 (d, *J* = 6.8 Hz, 1H, C₆-H), 2.48 (s, 3H, C₈-CH₃), 2.30 (s, 3H, C₂-CH₃). Anal. Calcd for C₁₇H₁₄BrN₅S × H₂O: C, 48.81; H, 3.85; N, 16.74. Found: C, 49.42; H, 3.65; N, 16.39.

5-(2,8-Dimethylimidazo[1,2-*a***]pyridin-3-yl)-4-(4-fluorophenyl)-2,4-dihydro-3***H***-1,2,4-triazole-3-thione (5h): Yield: 63%, mp >268 °C. IR v (cm⁻¹): 3408, 3078 (N–H), 1629 (C=N), 1277 (C=S). ¹H NMR \delta ppm: 14.24 (s, 1H, NH), 8.20 (d,** *J* **= 6.8 Hz, 1H, C₅-H), 7.45–7.33 (m, 3H, phenyl C₂-H, C₆-H, C₇-H), 7.19–7.10 (m, 2H, phenyl C₃-H, C₅-H), 6.76 (d,** *J* **= 6.8 Hz, 1H, C₆-H), 2.45 (s, 3H, C₈-CH₃), 2.34 (s, 3H, C₂-CH₃). Anal. Calcd for C₁₇H₁₄FN₅S: C, 60.16; H, 4.16; N, 20.63. Found: C, 60.23; H, 4.19; N, 20.20.**

2. 2. Microbiology

2. 2. 1. Antibacterial and Antifungal Activity

Disc diffusion method was used for antimicrobial activity. The cultures of bacteria and yeast strains were prepared in 4 mL of Mueller–Hinton broth at 37 °C. After 24 h of incubation, the turbidity of culture suspension was adjusted with sterile Mueller–Hinton broth in order to obtain a turbidity comparable to a No. 1 McFarland turbidity standard. One mL of this suspension was pipetted into the Mueller–Hinton agar plate and distributed evenly over the surface of the medium by gently rocking the plate. Excess suspension was pipetted off. The surface of the medium was allowed to dry for 15 min at room temperature. Compound (200 µg) impregnated discs were applied to the surface of inoculated plates. The petri plates were placed in an incubator at 37 °C. After 18–24 h of incubation, the petri plates were examined.¹⁹

The minimum inhibitory concentrations (MIC) of the compounds were determined by the microbroth dilution technique using Mueller–Hinton broth. Serial twofold dilutions ranged from 2500 to 2.4 μ g mL⁻¹ for compounds. The inoculum was prepared in broth which had been kept overnight at 37 °C and which had been diluted with Mueller–Hinton broth to give a final concentration of 105 cfu mL⁻¹ in the test tray. The trays were covered and placed in plastic bags to prevent drying. After incubation at 37 °C for 18–20 h, the MIC was defined as the lowest concentration of the compound giving complete inhibition of visible growth.²⁰

2. 2. 2. Antimycobacterial Activity

Primary screen was conducted at 12.5 μ g mL⁻¹ against *M. tuberculosis* H₃₇R_v in BACTEC 12B medium using BACTEC 460 radiometric system. Compounds effecting <90% inhibition in the primary screen (MIC >12.5 μ g mL⁻¹) were not evaluated further.²¹

3. Results and Discussion

3.1. Chemistry

1-[(2,8-Dimethylimidazo[1,2-*a*]pyridine-3-yl)carbonyl]-4-alkyl/arylthiosemicarbazides **2a**–**j** were obtained from **1**¹⁸ and corresponding alkyl/arylisothiocyanates. On treatment with ethyl bromoacetate, **2a–e** yielded 4-thiazolidinones **3a–e**. In the case of arylthiosemicarbazides **2f,g,i,j** the same reaction resulted in 1,3,4-oxadiazole derivatives **4a–d**.¹⁷ The thiosemicarbazides were cyclized to the corresponding *3H*-1,2,4-triazole-3-thiones **5a–h** by sodium hydroxide (Scheme).

The structures of the compounds were assigned by elemental analysis (CHN) and spectroscopic methods (IR, ¹H NMR, EI-MS). The IR spectra of **2a**-j showed the N-H and C=O vibrations at about 3136-3378 and 1627–1668 cm⁻¹, respectively. ¹H NMR spectra displayed N¹-H, N²-H and N⁴-H resonances in the δ 9.57–9.84, 9.23-9.84 and 8.00-9.84 ppm regions, respectively.^{11,17} The C₅-H, C₇-H and C₆-H resonances of the imidazo[1,2a]pyridine residue in all compounds appeared in the 8.80-8.90, 7.23-7.50 and 6.94-6.96 ppm regions, respectively. New C=O bands (1698–1718 cm⁻¹) in the IR spectra of 4-thiazolidinones 3a-e were particularly diagnostic for thiazolidinone formation.^{3,4,7,8,12,13} Further support was obtained from the ¹H NMR spectra of **3a–e** which showed signals due to the CH₂ protons at the 5 position of the 4thiazolidinone ring at about 3.90-4.06 ppm. After cyclization, absence of resonances assigned to the N²-H and N^4 -H protons of the thiosemicarbazides **2a**-e provided confirmatory evidence of thiazolidinone formation. Cyclization of 4-arylthiosemicarbazides 2f,g,i,j with ethyl bromoacetate yielded unexpected products, which were identified as 2-(2,8-dimethylimidazo[1,2-a]pyridine-3-yl)-5arylamino-1,3,4-oxadiazole (4a-d) on the basis of analytical and spectral data. Cyclization to 4-thiazolidinones involves the formation of an isothiosemicarbazide intermediate A (Scheme) following ene-thiolization. At this stage electronic effects or overall conformation of the isothiosemicarbazide intermediate can make the SCH₂COOEt moiety a good leaving group and thus can lead to the formation of 4a-d.^{7,11,17} Compounds 4a-d exist as the amino tautomer (NH: 10.35-10.78 ppm). The absence of C=O bands in the IR spectra 4a-d also support the 1,3,4-oxadiazole structure.

In a basic medium 1-acyl/aroyl-3-thiosemicarbazides are dehydrated by the condensation of the 4-amino group with the carbonyl function to give triazoline-3-

Scheme. General synthesis of compounds 2-5

thiones. The nucleophilicity of the terminal amino group of the thioamide determines whether it can undergo a condensation reaction or not. With a base, the sulfur function is ionized, and this increases the nucleophilicity of 4-amino group and promotes triazoline-3-thione formation.²³ IR spectra of **5a–h** provided definitive evidence for ring closure. The C=O absorption of the thiosemicarbazides disappears as the group participates in ring formation and a new band in the 1632–1628 cm⁻¹ region appeared which may be assigned to the C=N group of the triazoline ring.²⁴ ¹H NMR spectra also supported ring closure as they showed only one low-field singlet in the 14.10–14.30 ppm region which is thus assigned to the N²-H of the ring. 5-Substituted 2,4-dihydro-3*H*-1,2,4-triazole-3-thiones may exist in tautomeric forms. **5a–h** favored the thione form since no absorption indicative of an SH group (2500 cm⁻¹) was displayed in the solid state IR spectra.^{10,11,23,25} The low field NH resonance in the ¹H NMR spectra supported this form and the structure can be assigned to the thione form also in solution.²⁵ The EI-MS of all representative examples showed moleculer ions of different intensity (except **2f**) and fragmented in accordance with the fragmentation routes given in the literature.^{9,11,23,25,26}

Cesur et al.: Synthesis and biological evaluation of some new ...

3.2. Microbiology

Compounds 2–5 were evaluated for *in vitro* antibacterial activity against *Staphylococcus aureus* ATCC 6538, *Staphylococcus epidermidis* ATCC 12228, *Escherichia coli* ATCC 8739, *Klebsiella pneumoniae* ATCC 4352, *Pseudomonas aeruginosa* ATCC 1539, *Salmonella typhi*, *Shigella flexneri*, *Proteus mirabilis* ATCC 14153, *Candida albicans* ATCC 10231 using the disc diffusion method. Some of these compounds had appreciable activity for *S. epidermidis* and *S. aureus* (Table).

Compounds **2f–j** were also evaluated for antimycobacterial activity against *Mycobacterium tuberculosis* $H_{37}R_v$. Only **2f** exhibited 55% inhibition in the *in vitro* primary screen conducted at 12.5 µg mL⁻¹.

Table. MIC values of compounds 2-5

Compounds	MIC (µg mL ⁻¹)	
	S. epidermidis	S. aureus
2d	312	_
2e	312	_
2f	78	_
2g	62.5	312
2h	62.5	156
2i	31.25	312
2j	62.5	312
3c	62.5	_
3d	62.5	_
3e	78	_
4c	39	_
5g	312	_

4. Conclusion

In this study we reported the preparation of novel imidazo[1,2-*a*]pyridine derivatives containing thiosemicarbazide, 4-thiazolidinone, 1,3,4-oxadiazole or 1,2,4triazole-3-thione moieties and their antimicrobial activities. Some of the compounds, especially thiosemicarbazide derivatives, were found to be active against *Staphylococcus aureus* and/or *Staphylococcus epidermidis* and only compound **2f** was found to be active against *Mycobacterium tuberculosis* $H_{37}R_y$

5. Acknowledgements

We thank Dr. Joseph A. Maddry from the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), National Institute of Allergy and Infectious Diseases Southern Research Institute, GWL Hansen's Disease Center, Colorado State University, Birmingham, Alabama, USA for the *in vitro* evaluation of antituberculosis activity. This work was partly supported by Istanbul University Research Fund, Project Number 1403 / 05 05 2000.

6. References

- 1. K. S. Gudmundsson, B. A. Johns, *Bioorg. Med. Chem. Lett.*, **2007**, *17*, 2735–2739.
- 2. N. Cesur, Z. Cesur, Farmaco, 1994, 49, 679-681.
- N. Cesur, Z. Cesur, N. Ergenç, M. Uzun, M. Kiraz, Ö. Kasımoğlu, D. Kaya, Arch. Pharm. (Weinheim), 1994, 327, 271–272.
- 4. N. Cesur, Z. Cesur, J. Fac. Pharm. Istanbul, 1998, 32, 29–35.
- J. M. Figueiredo, C. A. Camara, E. G. Amarante, A. L. P. Miranda, F. M. Santos, C. R. Rodrigues, C. A. M. Fraga, E. J. Berreiro, *Bioorg. Med. Chem.*, 2000, *8*, 2243–2248.
- S. Mavel, J. L. Renou, C. Galtier, R. Snoeck, G. Andrei, J. Balzarini, E. Clerq, A. Gueffier, *Arzneim. Forsch.*, 2001, 51, 304–309.
- 7. N. Ergenç, G. Çapan, Farmaco, 1994, 49, 133-135.
- 8. B. Ö. Kasımoğulları, Z. Cesur, *Turk. J. Chem.*, **2007**, *31*, 617–622.
- Ö. Ateş, A. Kocabalkanlı, G. Ötük Sanış, A. C. Ekinci, A. Vidin, Arzneim.-Forsch./Drug Res., 1997, 47, 1134–1138.
- A. Almasirad, N. Vousooghi, S. A. Tabatabai, A. Kebriaeezadeh, A. Shafiee, *Acta Chim. Slov.*, 2007, 54, 317–324.
- 11. N. Cesur, S. Birteksöz, G. Ötük, Acta Pharmaceutica Turcica, **2002**, 44, 23–41.
- P. Vicini, A. Geronikaki, K. Anastasia, M. Incerti, F. Zani, Bioorg. Med. Chem, 2006, 14, 3859–3864.
- N. Ergenç, G. Çapan, N. S. Günay, S. Özkırımlı, M. Güngör, S. Özbey, E. Kendi, Arch. Pharm. Pharm. Med. Chem., 1999, 332, 343–347.
- K. A. Metwally, S. H. Yaseen, E. M. Lashine, H. M. El-Fayomi, M. E. El-Sadek, *Eur. J. Med. Chem*, **2007**, *42*, 152– 160.
- A. I. Hashem, A. S. A. Youssef, K. A. Kandeel, W. S. I. Abou-Elmagd, *Eur. J. Med. Chem.*, **2007**, *42*, 934–939.
- Z. Cesur, N. Cesur, G. Ötük, *Acta Pharmaceutica Turcica*, 1989, 31, 135–138.
- 17. N. Cesur, Z. Cesur, A. Gürsoy, Arch. Pharm. (Weinheim), 1992, 325, 623–324.
- H. Oa, M. Obata, T. Yamanaka, H. Mikshina, PCT Int. Appl, WO 8607, 059,04 Dec1986, JP Appl. 85/112,715,25 May 1985; 31 pp. *Chem. Abstr.*, **1987**, *106*, 176381w.
- A. L. Barry, C. Thornsberry, In: E. H. Lennette, A. Balows, W. J. Hausler, H. J. Shadomy (Eds.): Manual and Clinical Microbiology, ASM, Washington DC, **1985**, p. 978.
- R. N. Jones, A. L. Barry, T. T. Govan, J. A. Washington II, In: E. H. Lennette, A. Balows, W. J. Hausler, H. J. Shadomy (Eds.): Manual and Clinical Microbiology, ASM, Washington DC, **1985**, p. 972.
- C. B. Inderleid, In: V. Lorian (Ed.): Antibiotics in Laboratory Medicine, 3rd ed. Williams and Wilkins, Baltimore, **1991**, p. 134.
- 22. Z. Cesur, H. Güner, G. Ötük, *Eur. J. Med. Chem.* **1994**, *29*, 981–983.
- 23. G. Çapan, N. Ergenç, G. Ötük, J. Fac. Pharm. Istanbul 1990–92, 26–28, 23–30.

- R. M. Silverstein, G. C. Bassler, T. C. Morrill, Spectrometric Identification of Organic Compounds, 4th ed. John Wiley & Sons, **1981**, p. 130.
- 25. Z. Cesur, N. Ergenç, E. Ilhan, Acta Pharmaceutica Turcica, 1989, 31, 103–109.
- 26. R. K. Bansal, G. Bhagchandani, J. Indian Chem. Soc. 1982, 59, 277 –279.

Povzetek

Pripravili smo novo serijo 1-[(2,8-dimetilimidazo[1,2-*a*]piridin-3-il)karbonil]-4-alkil/aril- tiosemikarbazidov, 2-[(2,8-dimetilimidazo[1,2-*a*]piridin-3-il)karbonil]hidrazono-3-alkil tiazolidin-4-onov, 2-(2,8-dimethilimidazo[1,2-*a*]piridin-3-il)-5-arilamino-1,3,4-oksa-diazolov in 4-alkil/aril-2,4-dihidro-5-(2,8-dimetilimidazo[1,2-*a*]piridin-3-il)-3*H*-1,2,4-triazol-3-tionov. Strukture spojin smo določili z IR, ¹H NMR, EI masno spektrometrijo in elementno analizo. Raziskali smo tudi aktivnosti proti bakterijam, glivam in mikobakterijam na različnih vrstah mikroorganizmov; nekatere spojine so bile v različni meri aktivne proti *Staphylococcus aureus*, *Staphylococcus epidermidis* in *Mycobacterium tuberculosis* $H_{37}R_{y}$.